六合图库118大众免费印刷|白猫六合图库准不准|
首頁 > 論文 > 中國光學 > 12卷 > 2期(pp:405-412)

空潛自由空間光通信的鏈路性能評估

Link performance evaluation for air-sea free-space optical communications

  • 摘要
  • 論文信息
  • 參考文獻
  • 被引情況
  • PDF全文
分享:

摘要

長期以來, 空中平臺與水下平臺之間的有效通信一直是一個具有挑戰性的課題, 因為聲波或電磁波只能有效地僅在海水或空氣中傳播, 而無法同時在這兩種介質中高效傳輸數據。相比電磁波, 激光束能夠穿透相當深度的海水, 因而自由空間光通信被認為是一種很好的空潛通信替代手段。眾所周知, 吸收和散射引起的衰減是水下激光傳播主要不利因素之一, 然而這只能通過加大發射功率來補償。盡管如此, 即使發射功率大到能夠保證一定的接收機靈敏度, 大氣和海洋湍流引起的光強起伏也會在很大程度上降低鏈路性能。本文重點研究水下載具與空中平臺之間的自由空間光通信鏈路中的湍流效應, 利用波動光學仿真, 研究高斯光束和環形光束在空-潛兩段鏈路中的傳播, 并根據數值結果對上行鏈路和下行鏈路之間的性能差異進行了比較說明。總體來說, 由于湍流的主要部分離發射機更近, 上行鏈路更容易受到湍流的影響。此外, 研究中還發現環形光束往往能產生較小的閃爍指數和較高的信噪比。本項工作能夠為未來的空潛光通信系統的研究和發展提供有益的參考。

Abstract

Effective communication between underwater platforms and aerial platforms has been a challenging issue in a long-time, due to the fact that either acoustic waves or electromagnetic waves can efficiently transmit only in the sea water or air, rather than both. As laser beams are able to penetrate a decent depth of sea water, free-space optical communications(FSOC) is considered to be a good substitutive approach. As is well known, the attenuation caused by absorption and scattering has proved to be the most significant adverse factor for underwater laser propagation, which, however, can only be compensated by a larger power margin. Nonetheless, even if the launching power is large enough to allow for affordable receiver sensitivity, the intensity fluctuation induced by atmospheric and oceanic turbulence can degrade the link performance to a great extent. This study addresses the turbulence effects on FSOC links between an underwater vehicle and an aerial platform. By use of wave optics simulation(WOS), the propagation of both the Gaussian beams and the annular beams in an air-sea two-section link is examined. The difference in performance between the uplink and the downlink is compared and explained according to numerical results. Generally, uplink suffers more from turbulence because the majority of turbulence lies nearer to its transmitter. Moreover, it is found that an annular beam always delivers a smaller scintillation index and a greater signal-to-noise ratio. This study is supposed to benefit the research and development of future air-sea optical communication systems.

Newport宣傳-MKS新實驗室計劃
補充資料

中圖分類號:O439

DOI:10.3788/co.20191202.0405

所屬欄目:原創文章

基金項目:國家自然科學基金: 新型部分相干光束合成機理與方法及其抗大氣湍流特性的研究(No.61275081)

收稿日期:2018-05-16

修改稿日期:2018-06-12

網絡出版日期:--

作者單位    點擊查看

李 軍:華中科技大學 光學與電子信息學院, 武漢 430074華中科技大學 研究院, 深圳 518000
元秀華:華中科技大學 光學與電子信息學院, 武漢 430074華中科技大學 研究院, 深圳 518000
王銘淏:華中科技大學 光學與電子信息學院, 武漢 430074賓夕法尼亞州立大學 電子工程系, 大學城 16802

聯系人作者:李軍([email protected])

備注:LI Jun(1978—), male, Jingzhou, Hubei. In 2012, he received his master's degree from Yangtze University. Since 2013, he has been a PhD student in School of Optical and Electronic Information at Huazhong University of Science and Technology. Research area: free-space optical communications.

【1】MAKAVITA C D,JAYASINGHE S G,NGUYEN H D,et al.. Experimental study of command governor adaptive control for unmanned underwater vehicles[J]. IEEE Transactions on Control Systems Technology,2019,27(1): 332-345.

【2】SEDAGHATI S,ABDOLLAHI F,KHORASANI K. Model predictive and non-cooperative dynamic game fault recovery control strategies for a network of unmanned underwater vehicles[J]. International Journal of Control,2017,doi: 10.1080/00207179.2017.1360517.

【3】PREISIG J. Acoustic propagation considerations for underwater acoustic communications network development[C]. ACM International Workshop on Underwater Networks,ACM,2006: 1-5.

【4】CHITRE M,POTTER J,HENG O S. Underwater acoustic channel characterisation for medium-range shallow water communications[C]. Oceans ′04. MTS/IEEE Techno-Ocean,IEEE,2004: 40-45.

【5】RATNI B,DE LUSTRAC A,PIAU G P,et al.. Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas[J]. Optics Express,2018,26(3): 2613-2624.

【6】ZHANG D,HAO SH Q,ZHAO Q S,et al.. Wavefront reconstruction method based on wavelet fractal interpolation for coherent free space optical communication[J]. Optics Communications,2018,410: 723-729.

【7】ELAMASSIE M,UYSAL M,BAYKAL Y,et al.. Effect of eddy diffusivity ratio on underwater optical scintillation index[J]. Journal of the Optical Society of America A,2017,34(11): 1969-1973.

【8】BORAH D K,VOELZ D G. Spatially partially coherent beam parameter optimization for free space optical communications[J]. Optics Express,2010,18(20): 20746-20758.

【9】WANG M H,YUAN X H,MA D L. Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation[J]. Applied Optics,2017,56(10): 2851-2857.

【10】ZHU X M,KAHN J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications,2002,50(8): 1293-1300.

【11】GEREKCIOGˇLU H,BAYKAL Y,NAKIBOGˇLU C. Annular beam scintillations in strong turbulence[J]. Journal of the Optical Society of America A,2010,27(8): 1834-1839.

【12】JI X L,CHEN H,JI G M. Characteristics of annular beams propagating through atmospheric turbulence along a downlink path and an uplink path[J]. Applied Physics B,2016,122(8): 221.

【13】EYYUBOGˇLU H T,ALTAY S,BAYKAL Y. Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence[J]. Optics Communications,2006,264(1): 25-34.

【14】LI X Q,JI X L. Propagation characteristics of decentered annular beams through non-Kolmogorov turbulence[J]. Journal of the Optical Society of America A,2014,31(1): 172-182.

【15】CYWIAK M,CYWIAK D,YEZ E. Finite Gaussian wavelet superposition and Fresnel diffraction integral for calculating the propagation of truncated, non-diffracting and accelerating beams[J]. Optics Communications,2017,405: 132-142.

【16】FESHCHENKO R M,VINOGRADOV A V,ARTYUKOV I A. Propagation of waves from an arbitrary shaped surface-a generalization of the Fresnel diffraction integral[J]. Optics Communications,2018,413: 291-294.

【17】DWIVEDI G,SHARMA A,DEBNATH S,et al.. Comparison of numerical reconstruction of digital holograms using angular spectrum method and Fresnel diffraction method[J]. Journal of Optics,2017,doi: 10.1007/s12596-017-0424-z.

【18】CHEN SH G,ZHANG T L,HU L B,et al.. Vertical variations in optical properties of the waters in the Yellow Sea and Bohai Sea at seasonal scales and their influencing mechanisms[J]. Optics Express,2018,26(4): 4112-4134.

【19】NIKISHOV V V,NIKISHOV V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research,2000,27(1): 82-98.

【20】SCHMIDT J D. Numerical simulation of optical wave propagation with examples in MATLAB[J]. Proceedings of SPIE,2010,PM199: 212.

【21】ANDREWS L C,PHILIPS R L. Laser Beam Propagation Through Random Media[M]. 2nd ed. Bellingham,WA: SPIE,2005.

引用該論文

LI Jun,YUAN Xiu-hua,WANG Ming-hao. Link performance evaluation for air-sea free-space optical communications[J]. Chinese Optics, 2019, 12(2): 405-412

李 軍,元秀華,王銘淏. 空潛自由空間光通信的鏈路性能評估[J]. 中國光學, 2019, 12(2): 405-412

您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF

六合图库118大众免费印刷
宝利配资 网易股票 配资平台 2019股票配资平台哪个最好 盛鹏配资 K线猎手 华讯投资 灵菲配资 股票指数投资策略讲课1课后测验 理财小知识月入2000元