六合图库118大众免费印刷|白猫六合图库准不准|
首頁 > 論文 > 中國激光 > 47卷 > 1期(pp:102006--1)

激光深熔焊等離子體電信號振蕩特征與焊縫熔深的特征關系

Relation between Plasma Electrical Signal Oscillation and Weld Depth in Laser Deep Penetration Welding

  • 摘要
  • 論文信息
  • 參考文獻
  • 被引情況
  • PDF全文
分享:

摘要

針對激光深熔焊接過程的監控問題,基于小孔內部壓力平衡條件分析了小孔振蕩和小孔深度的關系。在此基礎上基于小孔行為與等離子體行為的耦合性,以及等離子體振蕩特征與等離子體電信號波動特征的一致性,利用短時自相關分析方法分析了A304不銹鋼和Q235碳鋼在激光深熔焊接過程中等離子體電信號振蕩周期與焊縫熔深之間的關系。結果表明,等離子體電信號振蕩周期隨焊縫熔深的增加而增大,并且不同焊接材料的等離子體電信號振蕩周期與焊縫熔深之間的關系不同。最后,在可變熱輸入連續焊接驗證實驗中,在焊接過程穩定的條件下,等離子體電信號的短時自相關分析結果與焊縫熔深之間有比較好的對應關系,與所分析的小孔振蕩特征方程具有一致性。

Abstract

In this study, the relation between keyhole oscillation and depth is analyzed based on the internal pressure balance conditions of the keyhole to allow real-time monitoring of the laser penetration welding process. Then, based on the coupling of keyhole behavior with plasma behavior and consistency of plasma oscillation characteristics with plasma electrical signal fluctuation characteristics, we use a short-time autocorrelation analysis method to analyze the relation between the oscillation period of a plasma electrical signal and weld depth during laser penetration welding of A304 stainless steel and Q235 carbon steel. Results show that the plasma electrical signal''s oscillation period increases with an increase in the weld depth, and the relations between the plasma electrical signal''s oscillation period and weld depth differ when the welding materials are different. Finally, in a variable heat input continuous welding verification test, we obtain a good correspondence between the short-time autocorrelation analysis results of plasma electrical signals and weld penetration when the welding process is stable, which is consistent with the keyhole oscillation characteristic equation we analyzed.

Newport宣傳-MKS新實驗室計劃
補充資料

中圖分類號:TG456.7

DOI:10.3788/CJL202047.0102006

所屬欄目:激光制造

基金項目:國家自然科學基金;

收稿日期:2019-08-21

修改稿日期:2019-09-26

網絡出版日期:2020-01-01

作者單位    點擊查看

許賽:天津大學材料科學與工程學院, 天津300350
楊立軍:天津大學材料科學與工程學院, 天津300350天津大學天津市現代連接技術重點實驗室, 天津300350
徐書峰:山西太鋼不銹鋼股份有限公司不銹冷軋廠, 山西 太原 030003
黃一鳴:天津大學材料科學與工程學院, 天津300350
趙圣斌:天津大學材料科學與工程學院, 天津300350
李珊珊:天津大學材料科學與工程學院, 天津300350

聯系人作者:徐書峰([email protected]); 黃一鳴([email protected]);

備注:國家自然科學基金;

【1】Peng J, Hu S M, Wang X X, et al. Effect of filler metal on three-dimensional transient behavior of keyholes and molten pools in laser welding [J]. Chinese Journal of Lasers. 2018, 45(1): 0102003.
彭進, 胡素夢, 王星星, 等. 填材對激光焊接匙孔與熔池三維瞬態行為的影響 [J]. 中國激光. 2018, 45(1): 0102003.

【2】Yang W X, Xin J J, Fang C, et al. Microstructures and mechanical properties of hundred-millimeter-grade 304 stainless steel joints by ultra-narrow gap laser welding [J]. Chinese Journal of Lasers. 2018, 45(7): 0702005.
楊武雄, 信紀軍, 方超, 等. 百毫米級304不銹鋼超窄間隙激光焊接頭的組織及性能 [J]. 中國激光. 2018, 45(7): 0702005.

【3】Huang Y M, Xu S, Yang L J, et al. Defect detection during laser welding using electrical signals and high-speed photography [J]. Journal of Materials Processing Technology. 2019, 271: 394-403.

【4】Qiu W C, Yang L J, Liu T, et al. Optic-electrical signal analysis of plasma fluctuation characteristics in laser deep penetration welding [J]. Chinese Journal of Lasers. 2018, 45(4): 0402001.
邱文聰, 楊立軍, 劉桐, 等. 激光深熔焊等離子體波動特征光電信號分析 [J]. 中國激光. 2018, 45(4): 0402001.

【5】Buvanashekaran G, Shanmugam S N, Sankaranarayanasamy K, et al. A study of laser welding modes with varying beam energy levels [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2009, 223(5): 1141-1156.

【6】Kawahito Y, Mizutani M, Katayama S. High quality welding of stainless steel with 10 kW high power fibre laser [J]. Science and Technology of Welding and Joining. 2009, 14(4): 288-294.

【7】Blecher J J. Galbraith C M,van Vlack C, et al. Real time monitoring of laser beam welding keyhole depth by laser interferometry [J]. Science and Technology of Welding and Joining. 2014, 19(7): 560-564.

【8】Tenner F, Brock C, Kl?mpfl F, et al. Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for the modeling of the keyhole geometry [J]. Optics and Lasers in Engineering. 2015, 64: 32-41.

【9】Seto N, Katayama S, Matsunawa A. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation [J]. Journal of Laser Applications. 2000, 12(6): 245-250.

【10】Mrna L, Sarbort M, Rerucha S, et al. Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel [J]. Journal of Laser Applications. 2017, 29(1): 012009.

【11】Sibillano T, Rizzi D, Ancona A, et al. Spectroscopic monitoring of penetration depth in CO2 Nd∶YAG and fiber laser welding processes [J]. Journal of Materials Processing Technology. 2012, 212(4): 910-916.

【12】Yang R X, Yang L J, Liu T, et al. Spectral analysis of laser induced plasma electrical signals from Nd∶YAG laser welding of A304 stainless steels [J]. Chinese Journal of Lasers. 2016, 43(8): 0802008.
楊瑞霞, 楊立軍, 劉桐, 等. A304不銹鋼Nd∶YAG激光焊光致等離子體電信號頻譜分析 [J]. 中國激光. 2016, 43(8): 0802008.

【13】Zhao S B, Yang L J, Liu T, et al. Analysis of plasma oscillations by electrical detection in Nd∶YAG laser welding [J]. Journal of Materials Processing Technology. 2017, 249: 479-489.

【14】Qiu W C, Yang L J, Zhao S B, et al. A study on plasma plume fluctuation characteristic during A304 stainless steel laser welding [J]. Journal of Manufacturing Processes. 2018, 33: 1-9.

【15】Yu G, Yu H J. Laser manufacturing technology[M]. Beijing: National Defense Industry Press, 2012, 205-209.
虞鋼, 虞和濟. 激光制造工藝力學[M]. 北京: 國防工業出版社, 2012, 205-209.

【16】Klein T, Vicanek M, Kroos J, et al. Oscillations of the keyhole in penetration laser beam welding [J]. Journal of Physics D: Applied Physics. 1994, 27(10): 2023-2030.

【17】Trappe J, Kroos J, Tix C, et al. On the shape and location of the keyhole in penetration laser welding [J]. Journal of Physics D: Applied Physics. 1994, 27(10): 2152-2154.

【18】Kroos J, Gratzke U, Vicanek M, et al. Dynamic behaviour of the keyhole in laser welding [J]. Journal of Physics D: Applied Physics. 1993, 26(3): 481-486.

【19】Klein T, Vicanek M, Simon G. Forced oscillations of the keyhole in penetration laser beam welding [J]. Journal of Physics D: Applied Physics. 1996, 29(2): 322-332.

【20】Zhao S B, Yang L J, Liu T, et al. Electrical signal characteristics of plasma in YAG laser welding of A304 stainless steels under different modes [J]. Chinese Journal of Lasers. 2016, 43(12): 1202005.
趙圣斌, 楊立軍, 劉桐, 等. 不同焊接模式下的A304不銹鋼YAG激光焊等離子體的電信號特征 [J]. 中國激光. 2016, 43(12): 1202005.

【21】Dowden J, Davis M, Kapadia P. Some aspects of the fluid dynamics of laser welding [J]. Journal of Fluid Mechanics. 1983, 126: 123-146.

【22】Sabbaghzadeh J, Dadras S, Torkamany J. Comparison of pulsed Nd∶YAG laser welding qualitative features with plasma plume thermal characteristics [J]. Journal of Physics D: Applied Physics. 2007, 40(4): 1047-1051.

引用該論文

Xu Sai,Yang Lijun,Xu Shufeng,Huang Yiming,Zhao Shengbin,Li Shanshan. Relation between Plasma Electrical Signal Oscillation and Weld Depth in Laser Deep Penetration Welding[J]. Chinese Journal of Lasers, 2020, 47(1): 0102006

許賽,楊立軍,徐書峰,黃一鳴,趙圣斌,李珊珊. 激光深熔焊等離子體電信號振蕩特征與焊縫熔深的特征關系[J]. 中國激光, 2020, 47(1): 0102006

您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF

六合图库118大众免费印刷
彩票下载app送28元彩金 中国中铁股票行情 宁夏十一选五app 孤梦惊人四肖中特 篮彩让分什么意思 中国竞彩比分足球比分直播 淘宝赚钱的app哪个好 江苏快3下载官网 河北11选5彩票群 2o17双色球杀兰公式